Сделать домашней|Добавить в избранное
 

Читайте энциклопедические статьи у нас в сбронике словарей и справочников

 

Группа кватерниона

Группа кватерниона

В теории группы группа кватерниона - non-abelian группа заказа восемь, изоморфный к определенному подмножеству с восемью элементами кватернионов при умножении. Это часто обозначается Q или Q, и дано представлением группы

:

где 1 элемент идентичности и −1 поездки на работу с другими элементами группы.

Графы

У

группы Q есть тот же самый заказ как Образуемая двумя пересекающимися плоскостями группа, D, но различная структура, как показано их графами Кэли:

Стол Кэли

Столом Кэли (таблица умножения) для Q дают:

Умножение пар элементов от подмножества {±i, ±j, ±k} работает как взаимный продукт векторов единицы в трехмерном Евклидовом пространстве.

:

ij & = k, & ji & =-k,

jk & = я, & kj & =-i,

ki & = j, & ik & =-j.

Свойства

У

группы кватерниона есть необычная собственность того, чтобы быть гамильтоновым: каждая подгруппа Q - нормальная подгруппа, но группа - non-abelian. Каждая гамильтонова группа содержит копию Q.

В абстрактной алгебре можно построить реальное четырехмерное векторное пространство с основанием {1, я, j, k} и превращать его в ассоциативную алгебру при помощи вышеупомянутой таблицы умножения и distributivity. Результат - искажать область, названная кватернионами. Обратите внимание на то, что это - не совсем то же самое как алгебра группы на Q (который был бы восьмимерным). С другой стороны можно начать с кватернионов и определить группу кватерниона как мультипликативную подгруппу, состоящую из этих восьми элементов {1, −1, я, −i, j, −j, k, −k}. Сложное четырехмерное векторное пространство на той же самой основе называют алгеброй biquaternions.

Обратите внимание на то, что я, j, и k, у всех есть заказ четыре в Q и любых двух из них, производим всю группу. Другое представление Q, демонстрирующего это:

:

Можно взять, например, меня = x, j = y и k = x y.

Центр и подгруппа коммутатора Q - подгруппа {±1}. Группа фактора Q/{±1} изоморфна Кляйну, с четырьмя группами V. Внутренняя группа автоморфизма Q изоморфна к модулю Q свой центр и поэтому также изоморфна Кляйну, с четырьмя группами. Полная группа автоморфизма Q изоморфна к S, симметричной группе на четырех письмах. Внешняя группа автоморфизма Q - тогда S/V, который изоморфен к S.

Матричные представления

Группа кватерниона может быть представлена как подгруппа общей линейной ГК группы (C). Представление

:

дан

:

1 & 0

0 & 1

:

я & 0

0 &-i

:

0 & 1

- 1 & 0

:

0 & я

я & 0

Так как у всех вышеупомянутых матриц есть детерминант единицы, это - представление Q в специальной линейной группе SL (C). Стандартные тождества для умножения кватерниона могут быть проверены, используя обычные законы матричного умножения в ГК (C).

Есть также важное действие Q на восьми элементах отличных от нуля 2-мерного векторного пространства по конечной области Ф. Представление

:

дан

:

1 & 0

0 & 1

:

1 & 1

1 &-1

:

- 1 & 1

1 & 1

:

0 &-1

1 & 0

где {−1,0,1} три элемента F. Так как у всех вышеупомянутых матриц есть детерминант единицы по F, это - представление Q в специальной линейной группе SL (2, 3). Действительно, группа, у SL (2, 3) есть приказ 24 и Q, является нормальной подгруппой SL (2, 3) индекса 3.

Группа Галуа

Поскольку Ричард Дин показал в 1981, группа кватерниона может быть представлена как Девочка группы Галуа (T/Q), где Q - область рациональных чисел, и T - разделяющаяся область, по Q, полиномиала

:.

Развитие использует фундаментальную теорему теории Галуа в определении четырех промежуточных областей между Q и T и их группами Галуа, а также двумя теоремами на циклическом расширении степени четыре по области.

Обобщенная группа кватерниона

Группу называют обобщенной группой кватерниона или dicyclic группой, если у этого есть представление

:

для некоторого целого числа. Эта группа обозначена Q и имеет приказ 4n. Коксетер маркирует эти dicyclic группы

:

omega_n & 0

0 & overline {омега} _n

end {выстраивают }

ight)

mbox {и }

left (egin {множество} {cc }

0 &-1

1 & 0

end {выстраивают }

ight)

где ? = e. Это может также быть понято как подгруппа кватернионов единицы, произведенных и.

У

обобщенных групп кватерниона есть собственность, что каждая abelian подгруппа циклична. Можно показать, что конечная p-группа с этой собственностью (каждая abelian подгруппа циклична) или циклична или обобщенная группа кватерниона, как определено выше. Другая характеристика состоит в том, что конечная p-группа, в которой есть уникальная подгруппа приказа p, является или циклическим или обобщенным кватернионом (заказа власть 2). В частности для конечной области Ф со странной особенностью 2-Sylow подгруппа SL (F) является non-abelian и имеет только одну подгруппу приказа 2, таким образом, эта 2-Sylow подгруппа должна быть обобщенной группой кватерниона. Позволяя p быть размером F, где p главный, размер 2-Sylow подгруппы SL (F) равняется 2, где.

Теорема Brauer–Suzuki показывает, что группы, 2 подгруппы Sylow которых - обобщенный кватернион, не могут быть простыми.

См. также

  • двойная четырехгранная группа
  • Алгебра Клиффорда
  • группа dicyclic
  • Кватернион интеграла Hurwitz
  • Список небольших групп
  • С 16 клетками

Примечания

  • Декан, Ричард А. (1981) «Рациональный полиномиал, группа которого - кватернионы», американская Mathematical Monthly 88:42-5.
  • П.Р. Жирар (1984) «Группа кватерниона и современная физика», европейский Журнал Физики 5:25-32.

Внешние ссылки


Комментарии:

Написать коммент
 

Читайте больше умных сведенний и фактом во всм мире, пригодится в жизни.